Neutrino Mass Ordering and the Neutrino-nian Knot

FNAL Undergraduate Lecture Series —July 26, 2016

PARTI

Neutrinos!

The Standard Model

The world map with which we set off on our quest.

Anti-matter

*Disclaimer: Some of these particles (e.g., the photon) are their own anti-particles.

Everyday matter consists of only a small piece of the standard model

Anti-matter

*Disclaimer: Some of these particles (e.g., the

photon) are their own anti-particles.

Up and down quarks give us protons and neutrons

Proton

Neutron

Image Source: Wikipedia

They are held together by the gluon (strong force carrier)

Proton

Image Source: Wikipedia

Neutron

Residual strong force keeps protons and neutrons bound together

Nucleus

And electrons are bound to nuclei by photons (electromagnetic force carrier)

These atoms interact electromagnetically to give us the chemicals that make up our world

Images: Wikipedia, "Caffeine"

But what about the rest of the elementary particles?

K. Matera

Anti-matter

*Disclaimer: Some of these particles (e.g., the photon) are their own anti-particles.

7/22/2016

At the beginning of the universe, these particles existed in abundance!

Image Source: Astroblogs: "Waarin dijt het heelal uit?"

Matter and anti-matter almost completely annihilated

10,000,000,001

10,000,000,000

Leaving behind a universe dominated by matter

1

And as the universe cooled down, heavier, more exotic particles were unstable

...and they decayed away...

Image Source: CERN, Simulated CMS Event Display

Disclaimer: This is a simulated Higgs production event in proton-proton collisions at CMS. Some of the final-states of particles represented by this image are probably muons. Should be considered for illustrative purposes only.

...until all that was left were the familiar, lighter particles!

Elementary particles aren't composed of anything smaller

They can't simply 'break apart' when they decay. They must change identity and shed excess energy (as particles).

^{*}Disclaimer: Except for the top quark, quarks do not exist outside of bound states. In general, quark flavor-changing interactions would take place inside of a meson or baryon.

This kind of identity-swapping is possible through the weak force

And **neutrinos** are the weak force's attendant!

So going back to these...

leptons

Each particle can be 'flipped' by weak interactions

-1 electron

Each
particle can
be 'flipped'
by weak
interactions

Each
particle can
be **flipped**'
by **weak**interactions

leptons

Each
particle can
be 'flipped'
by weak
interactions

Each
particle can
be 'flipped'
by weak
interactions

Each
particle can
be **flipped**'
by **weak**interactions

But these interactions cannot happen alone

An up quark can be flipped into a down quark — but, *e.g.*, an electron must be flipped into a neutrino as well.

Neutrinos are very frequently involved!

In fact, we can use neutrinos to force these processes to go in reverse

This is the basis of neutrino detectors!

In such interactions, neutrino flavor states will change into the particle they're named after

(Diagrams from Anne Schukraft's talk on June 16)

Neutrinos can change identity without involving other particles

As neutrinos travel, they *oscillate* through three identities: electron neutrino, muon neutrino, and tau neutrino.

This means that an electron neutrino created in the sun might be detected here on earth as a muon neutrino!

This is because neutrino flavor states are composed of different mass states

(Recall that p = mv. The same p applied to three different m will give three different v!)

(Graphics from Anne Schukraft's talk on June 16)

7/22/2016 K. Matera 29

Let's say that we start off with a muon neutrino — this is a flavor eigenstate

Let's make it a muon neutrino from the NuMI beam

A flavor state is in a superposition of mass eigenstates.

time 1

And particles, remember, act as waves — waves can interfere with one another

As the neutrino moves, the mass states composing it begin to fall out of sync

But as the heavier states lag behind, eventually...

The mass states begin to interfere in a way that looks similar to the way they started

So if the neutrino interacts at time 4, we have a very good chance of observing a muon neutrino again

At other times, we might have a better chance of seeing, say, an electron neutrino

*Don't try to read too much into the wave packets —> plushies translation!

The plushie distributions shown are ~arbitrary.

This is, in essence, neutrino oscillation

Again, in reality, there are three mass eigenstates involved!*

*More if there are sterile neutrinos, but we won't talk about them in this talk.

Neutrino oscillation is described by a whole slew of variables

$$P(\nu_{\mu} \to \nu_{e}) = |U_{\mu 1}^{*} e^{-im_{1}^{2}L/2E} U_{e1} + U_{\mu 2}^{*} e^{-im_{2}^{2}L/2E} U_{e2} + U_{\mu 3}^{*} e^{-im_{3}^{2}L/2E} U_{e3}|^{2}$$

$$= |2U_{\mu 3}^{*} U_{e3} \sin \Delta_{31} e^{-i\Delta_{32}} + 2U_{\mu 2}^{*} U_{e2} \sin \Delta_{21}|^{2}$$

$$\approx |\sqrt{P_{atm}}e^{-i(\Delta_{32}+\delta)} + \sqrt{P_{sol}}|^2.$$

Equation Source: S. Parke, "Determining the Neutrino Mass Hierarchy"

These variables usually appear only in combination.

How can we cut these terms apart, and see what nature has to tell us?

K. Matera

7/22/2010

PART II Neutrino masses

We know that there are three neutrino mass states

But there's a lot about these states that is unknown.

For one, the jury's still out on whether the third mass eigenstate is more muon or tau-neutrino like

 $\theta_{23} > 45^{\circ}$

 $\theta_{23} < 45^{\circ}$

We also are not even sure what the masses of these states are!

An upper limit on the sum of the three neutrino masses is estimated at < 0.3 eV

Image: Viewpoint: Galaxies weight in on neutrinos

Massive Neutrinos

Massless Neutrinos

This was determined by exploring the effect of neutrino mass on structure formation in the early universe

Neutrino masses are oddly small

The basic Standard Model predicts that they ought to be *massless*.

But neutrinos *have* mass... six orders of magnitude smaller than the other elementary particles!

Do neutrinos acquire mass in the same way as other particles?

Image: On Determining the Neutrino Mass Hierarchy

Quarks and charged leptons get their mass from a "Yukawa" coupling to the Higgs field

This is called a "Dirac" mass, and has the effect that **Dirac** neutrinos and antineutrinos do not "mix"

7/22/2016 K. Matera

There are different mass generators that *do* allow neutrinos and anti-neutrinos to mix.

They either involve the Higgs field in a different way, or not at all!

These are called "Majorana" masses, and neutrinos with such masses are **Majorana neutrinos**

A Majorana neutrino would be its own antiparticle.

Given all of this — do neutrino masses follow expectation?*

The electron is lighter than the muon, is lighter than the tau...

So we might vaguely 'expect' that neutrinos follow a similar pattern.

In that case, we anticipate:

Mostly electronneutrino

Mostly muon and tauneutrino

equal contributions from all flavors

This is the **normal hierarchy**7/22/2016

K. Matera

*The hierarchy does not directly imply Dirac or Majorana neutrinos! 46

We have not yet determined whether the normal hierarchy holds

We have only determined that $v_2 > v_1$

If our "expectation" is flipped, we are looking at the **inverted hierarchy**.

7/22/2016 K. Matera 47

This is the Mass Hierarchy Problem

Solving it would help to untangle our knot.

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &= |U_{\mu 1}^{*} e^{-im_{1}^{2}L/2E} U_{e1} + U_{\mu 2}^{*} e^{-im_{2}^{2}L/2E} U_{e2} + U_{\mu 3}^{*} e^{-im_{3}^{2}L/2E} U_{e3}|^{2} \\ &= |2U_{\mu 3}^{*} U_{e3} \sin \Delta_{31} e^{-i\Delta_{32}} + 2U_{\mu 2}^{*} U_{e2} \sin \Delta_{21}|^{2} \\ &\approx |\sqrt{P_{atm}} e^{-i(\Delta_{32} + \delta)} + \sqrt{P_{sol}}|^{2}. \end{split}$$

Equation Source: S. Parke, "Determining the Neutrino Mass Hierarchy"

7/22/2016 K. Matera 48

Finding a NH or IH will affect how we answer the Majorana vs Dirac question

This might be done by looking for neutrino-less double-beta decay (0vββ)

Consider an unstable nucleus at rest.

Neutrons can decay...

...into protons, with the release of an anti-neutrino and an electron

Also recall that an neutrino can convert a neutron into a proton

Also recall that an neutrino can convert a neutron into a proton

An electron neutrino is 'flipped' into an electron in the process

But if a neutrino is its own antineutrino, then we might see...

That the **anti-neutrino** produced by neutron decay...

Will interact **as a neutrino** with another neutron in the same nucleus

Producing two beta (electron) particles, but *no neutrinos*...

This is called neutrino-less double beta decay (0vββ)

The rate of $0v\beta\beta$ decay is proportional to the value of m_{ee} .

This is called neutrino-less double beta decay (0vββ)

The rate of $0\nu\beta\beta$ decay is proportional to the value of m_{ee} . The value of m_{ee} depends on the mass hierarchy.

A direct mass measurement could eliminate the inverted hierarchy option

And so $m(v_1) > m(\Delta m_{31})$ would effectively rule out the **inverted hierarchy**.

7/22/2016 K. Matera 60

What if a neutrino has both a Majorana *and* a Yukawa mass term?

This leads to neutrinos with two distinct masses; if one is very large, the other must be very small.

Image (without plushies): Fermilab Today

This is called the See-Saw mechanism. It predicts that the light neutrinos we see have heavy counterparts.

K. Matera

61

In the early universe, matter and antimatter were produced in equal abundance

This included many heavy neutrinos

But the neutrino sector includes a CP violating mechanism

In interactions / decays, CP violation allows matter...

But the neutrino sector includes a CP violating mechanism

In interactions / decays, CP violation allows matter...
and antimatter...

But the neutrino sector includes a CP violating mechanism

In interactions / decays, CP violation allows matter... and antimatter... to behave differently

This imbalance in the production of leptons and anti-leptons is called **Leptogenesis**

And it could explain why the universe has an excess of matter over antimatter

This imbalance in the production of leptons and anti-leptons is called **Leptogenesis**

And it could explain why the universe has an excess of matter over antimatter

The **sphaleron** process allows part of this **lepton-antilepton asymmetry** to be converted to a **quark-antiquark asymmetry**

The δ_{CP} term in neutrino mixing measures CP violation in neutrino interactions.

The δ_{CP} term in neutrino mixing measures CP violation in neutrino interactions.

The δ_{CP} term in neutrino mixing measures CP violation in neutrino interactions.

We can **compare** these rates to help determine **δ**_{CP} for light neutrinos

Theories that seek to explain unification often predict certain neutrino oscillation regimes

Determining which regimes describe our reality can narrow down which theories are valid

PART III Taking Action

Solar and reactor neutrino experiments have made groundbreaking progress

Reactor experiments study anti- electron neutrinos produced by nuclear reactors to obtain high precision measurements of θ₁₃

Days Bay Image Source: <u>LBL News Center</u>

SNO detector Image Source: Wikipedia

Solar neutrino experiments observe electron neutrinos from the sun to get high-precision values of Δm_{12} and θ_{12}

These types of experiments have also made measurements of other neutrino oscillation properties!

Long-baseline experiments at accelerators are aiming to finish the fight

In general, a muon neutrino beam is sent through the earth...

In transit, this beam becomes a mix of neutrino flavors...

At **near** and **far** detectors, fractions of observed muon and electron neutrino interactions are measured...

And compared to determine likely values of Δm_{32} , θ_{23} , and δ_{CP} (among others)

The same comparisons can be made for beams of antineutrinos

And compared to provide even further restrictions on these Δm_{32} , θ_{23} , and δ_{CP} (among others)

Long-baseline experiments have been designed to take advantage of this

Red and blue curves would be much closer together without the **matter effect**

Plot Source: <u>S. Parke, "Determining the Neutrino Mass Hierarchy"</u>
K. Matera

Depending on how kind nature is, a single measurement could resolve several questions at once

For the example point shown, we would be able to determine:

Depending on how kind nature is, a single measurement could resolve several questions at once

For the example point shown, we would be able to determine:

- 1) The mass hierarchy
- 2) That δ_{CP} is $\sim 3\pi/2$
- 3) The θ_{23} quadrant

Plot Source: <u>S. Parke, "Determining the Neutrino Mass Hierarchy"</u> K. Matera

Combining results of many different experiments will ultimately cut the knot

The End

KATRIN looks at the energy spectrum of tritium beta decays

The matter effect amplifies the influence of the mass hierarchy

As a beam of neutrinos passes through matter, interactions with electrons "refresh" the nue component

In fact, at a high enough density, the nue component would be 'locked in', and become an effective mass eigenstate.

K. Matera

In a normal (inverted) hierarchy:

As a beam of neutrinos passes through **matter**, interactions with electrons **increase** (decrease) the nue fraction.

At the same time, a beam of anti-neutrinos would see the anti-nue fraction decreased (increased).